Zic2-Dependent Axon Midline Avoidance Controls the Formation of Major Ipsilateral Tracts in the CNS
نویسندگان
چکیده
In bilaterally symmetric organisms, interhemispheric communication is essential for sensory processing and motor coordination. The mechanisms that govern axon midline crossing during development have been well studied, particularly at the spinal cord. However, the molecular program that determines axonal ipsilaterality remains poorly understood. Here, we demonstrate that ipsilateral neurons whose axons grow in close proximity to the midline, such as the ascending dorsospinal tracts and the rostromedial thalamocortical projection, avoid midline crossing because they transiently activate the transcription factor Zic2. In contrast, uncrossed neurons whose axons never approach the midline control axonal laterality by Zic2-independent mechanisms. Zic2 induces EphA4 expression in dorsospinal neurons to prevent midline crossing while Robo3 is downregulated to ensure that axons enter the dorsal tracts instead of growing ventrally. Together with previous reports, our data reveal a critical role for Zic2 as a determinant of axon midline avoidance in the CNS across species and pathways.
منابع مشابه
Zic2 regulates retinal ganglion cell axon avoidance of ephrinB2 through inducing expression of the guidance receptor EphB1.
The navigation of retinal axons to ipsilateral and contralateral targets in the brain depends on the decision to cross or avoid the midline at the optic chiasm, a critical guidance maneuver that establishes the binocular visual pathway. Previous work has identified a specific guidance receptor, EphB1, that mediates the repulsion of uncrossed axons away from its ligand, ephrinB2, at the optic ch...
متن کاملZic2 promotes axonal divergence at the optic chiasm midline by EphB1-dependent and -independent mechanisms.
Axons of retinal ganglion cells (RGCs) make a divergent choice at the optic chiasm to cross or avoid the midline in order to project to ipsilateral and contralateral targets, thereby establishing the binocular visual pathway. The zinc-finger transcription factor Zic2 and a member of the Eph family of receptor tyrosine kinases, EphB1, are both essential for proper development of the ipsilateral ...
متن کاملMagnitude of Binocular Vision Controlled by Islet-2 Repression of a Genetic Program that Specifies Laterality of Retinal Axon Pathfinding
Pathfinding of retinal ganglion cell (RGC) axons at the midline optic chiasm determines whether RGCs project to ipsilateral or contralateral brain visual centers, critical for binocular vision. Using Isl2tau-lacZ knockin mice, we show that the LIM-homeodomain transcription factor Isl2 marks only contralaterally projecting RGCs. The transcription factor Zic2 and guidance receptor EphB1, required...
متن کاملZic2 Patterns Binocular Vision by Specifying the Uncrossed Retinal Projection
During CNS development, combinatorial expression of transcription factors controls neuronal subtype identity and subsequent axonal trajectory. Regulatory genes designating the routing of retinal ganglion cell (RGC) axons at the optic chiasm to the appropriate hemisphere, a pattern critical for proper binocular vision, have not been identified. Here, we show that the zinc finger transcription fa...
متن کاملEphrinB3/EphA4-Mediated Guidance of Ascending and Descending Spinal Tracts
The spinal cord contains many descending and ascending longitudinal tracts whose development appears to be controlled by distinct guidance systems. We identified a population of dorsal spinal neurons marked by coexpression of the transcription factor Zic2 and the guidance receptor EphA4. Zic2+;EphA4+ neurons are surrounded by mechanosensory terminals, suggesting innervation by mechanoreceptor a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 80 شماره
صفحات -
تاریخ انتشار 2013